(10) Trigonometry

- 1. Find all the values of x between -3 and 2 for which $\sec \frac{\pi}{4} \sec^2(2x-2) = -\tan \frac{5\pi}{3}$
- 2. Find all the angles between 0^o and 180^o for the equation $\cos 3x = -11\cos^2 x$.
- 3. Solve the equation $\cos^2 \theta + 3 \sin \theta \cos \theta = -1$ for $0^o \le \theta \le 180^o$
- 4. a) Given that $\cos 2x = a + b$ and $\sin 2x = a b$. Show that $a^2 + b^2 = \frac{1}{2}$. b) Find a function that has the following graph

- 5. Prove that $\sin^4 A + \cos^4 A = \frac{1}{4}(3 + \cos 4A)$. (Hint: $Square(\sin^2 A + \cos^2 A)$ to help proof above equation)
- 6. ABC is a triangle where $\tan\left(\frac{\angle A}{2}\right) = \frac{1}{2}$.
 - i) Show that $\tan \angle A = \frac{4}{3}$.
 - ii) Find the exact values of $\sin(\angle B + \angle C)$ and $\cos(\angle B + \angle C)$ (Hint: $\angle A + \angle B + \angle C = 180^{\circ}$)
- 7. The depth of water, y meters, at a particular coast, t hours after 12 am is given by:

$$y = 4 + 3\sin\left(\frac{\pi}{6}t\right)$$
 , where $0 \le t \le 24$

- i) State the amplitude of y
- ii) What are the depths of water at high tide and low tide?
- iii) At what times of the day will low tide occur?
- 8. a) Prove the identity $\frac{\sin(A+B)}{\sin(A-B)} = \frac{\tan A + \tan B}{\tan A \tan B}$
 - b) Prove the identity $\sin^3 x + \cos^3 x = (\sin x + \cos x)(1 \sin x \cos x)$

- 9. i) Prove the identity $\sin 2x \tan x = \tan x \cos 2x$.
 - ii) Hence, without using a calculator, find the value of $tan(67.5^{\circ})$.

10.

In the diagram above, ABC is a triangle such that $\angle BAD = \angle DBC = \theta^o$, AB = 5~m~ and AC = 10~m.

- i) Find BC (Leave your answer in surd form)
- ii) Show that $BD = 5 \sin \theta^o$
- iii) Show that $BD = 5\sqrt{5}\cos\theta^o$
- iv) Hence, show that $2BD = 10\cos(\theta^o 24.1^o)$